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Abstract. The spheroidal phase shifts for high-energy electron scattering from a target 
consisting of two point charges are calculated by a semiclassical method. The calculations 
include the contribution of terms linear in h2 for two different model equations, and the 
results obtained are compared. Some general features of the spheroidal phase shifts are 
pointed out. The variation of the phase shifts with the separation between the charges is also 
studied. 

1. Introduction 

The problem of an electron in a two-centre potential has become the subject of renewed 
interest (Muller et a1 1973, Marinov et a1 1975). In an earlier paper (Mukherjee and 
Chandell978, referred to hereafter as I), we made an attempt to study the scattering of 
high-energy electrons from a two-centre potential. The Dirac equation with a two- 
centre potential was reduced to a Schroedinger-like equation with the help of a 
generalised Sommerfeld-Maue approximation (Mukherjee and Majumdar 1965). The 
solution of the Dirac equation is then constructed from that of the Schroedinger-like 
equation. The latter is separable in spheroidal coordinates for a class of potentials. A 
spheroidal partial wave analysis can now be done. The phase shifts are determined by a 
generalised JWKB method (Miller and Good 1953, Rosen and Yennie 1964, Lu and 
Measure 1972, Berry and Mount 1972). We considered as an example a target 
consisting of a pair of fixed equal point charges. The method essentially consists of 
comparing the solution of the problem with the known solution of a suitable model 
equation. The method is ideally suited for our problem, provided an appropriate model 
equation can be found. We have considered a specific case and have studied the 
suitability of the radial equation of the central Coulomb field problem as the model 
equation of our problem. It has been observed that, except for the m = 0 cases, the 
central Coulomb radial equation serves well as the model equation if one restricts 
oneself to the zeroth-order approximation. The problem with m = 0 cases, as well as 
the divergence difficulties encountered in calculating the first-order correction to the 
phase shifts, can, however, be solved with the help of Langer’s substitution. Some of the 
relevant points in this connection have already been mentioned in I. The purpose of the 
present paper is to present some additional results. In particular, the calculations for 
the first-order correction to the spheroidal phase shifts for a specific case of two equal 
point charges are given. The dependence of the calculated phase shifts on the choice of 
the model equation will also be considered. The variation of the phase shifts with the 
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separation between the two point charges will be studied. We shall follow mostly the 
notations of I and work, as in I, with the prolate spheroidal coordinates (&q, 4 )  defined 
in (1.1) of I. 

2. First-order correction to spheroidal phase shifts 

We first consider the effect of Langer’s substitution in the radial equations (5.2) and 
(5.4) of I. We define 

y - c = e ”  

Gmi(y) = ex”Fmr(x) 

s = e z  

ul(s) = e”’FI(z). 

The radial equations (5.2) and (5.4) of I can be rewritten as 

d’Fm1 (X )/dx + (41(x ) /h’ )Fml  (x) = 0 
where 

p q i ( x ) = r  e ex +2c (e2’+2(b+c)  e”+2bc+c’-A,1(c)-~~,  +2c  ex 
1 

(2.5) 

In the above, b and c have the same significance as in I, and Aml(c) is the separation 
constant, whose properties have been studied, in particular, by Stratton et a1 (1956), 
Flammer (1957) and Mott and Massey (1965). In calculating the phase shifts up to 
terms of order h”, we follow the semiclassical method of Miller and Good (1953) with 
the modifications introduced by Wald and Lu (1974). An outline of the method has 
already been given in § 4 of I. The method consists of comparing the solutions of a pair 
of equations of the type (4.1) and (4.2) of I. Equation (4.2) is assumed to be exactly 
solvable. The variable s is now looked upon as a function of y, with the assumption that 
as y + 00, s + W. The assumption (4.3), the consequent consistency conditions (4.4) and 
(4.5) of I, and the known form of the functions tl(y) and t ~ ( s ) ,  both of which tend to 1 
asymptotically, as is expected with the radial equation of a physical problem, lead to the 
determination of the desired phase shifts. With Langer’s substitution, we have to deal 
with the transformed equations (2.5) and (2.7), given above, in the variables x and z 
respectively, but the method can still be applied in a straightforward manner. The 
consistency condition which determines the phase shifts is given by 

where p:(x) = 41(x), pz(z) = d z ) ,  and xr and zr are the largest real roots of 41 = 0 and 
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q2 = 0 respectively. The primes indicate the number of times the p i  are differentiated 
WRT the respective arguments. Since the p i  occur in the denominator, the integrals in 
the second term on each side appear to be divergent at the lower limit of integration. 
This apparent divergence may be easily removed in some cases by the method of 
Bertocchi et a1 (1965) and Wald and Lu (1974). This consists of converting the second 
integral on each side of (2.9) into a contour integral in the complex x or z plane. The 
contour is taken from CD - ie to CO + ie in a clockwise direction around the turning point 
(avoiding any other complex root). Integrating by parts, we can now eliminate the 
function from the denominator. One can convert the contour integral back into the 
definite integral along the real axis to obtain 

A2 A2 
Jql(x)dx+- 12 J x, ~ q l ( x ) l J q l ( x ) d x  = / z : J Z E d z + z  Jz, Nq~(z) lJq2(z)dz 

(2.10) 
Jx: 
where 

(2.11) 

The integrands in (2.10) have no divergence at the respective turning points. However, 
a divergence is introduced every time the functions qi have an extremum beyond the 
corresponding turning point. In the problem under consideration ( b  = 0.5, c x 0.3), 
there is no real point of extremum beyond the classical turning point, and hence the 
divergence problem is solved up to first order in A2. It may be pointed out that the 
divergences, even when present, should mutually cancel out, so that a numerical 
method to cut off the singular point of the integrand may also lead to the correct results 
(Wald and Lu 1974). 

It is convenient to express (2.10) in terms of the old variables y and s:  

where 

(2.12) 

(2.13) 

(2.14) 

with t k ( y )  and tk(s) defined by (5.8) and (5.10) of I. The second integral on the RHS of 
(2.12) can be written as 

(2.15) 

which is easily evaluated. The phase shifts crml up to terms linear in h2 can now be 
written as 

(2.16) 0 
U m l =  r m l +  A m l  
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where 

b 
(+mi  0 = + ( I  +:)(sin-’ [ b 2 + ( l + z )  1 2  ] 1 / 2+?) 2 

-sin-’ 
b 

- 

with 

J 
( f 2 +  2by’ - A , , , I ) ~ / ~ +  J t t o d y  

Y t  

(2.17) 

a; = arg r(l+ 1 - ib)  (2.18) 

and A,,, the first-order correction term to the phase shift, is given by 

(2.19) 

y’ is some large value of y so that the term (m2-1)c2 / (y2 -c2 )2  can be neglected in 
comparison with the other terms in t k ( y ) .  The integral on the RHS of (2.19) can be easily 
evaluated numerically, the integrand being a rapidly decreasing function of y. 

We have shown in table 1 the spheroidal phase shifts calculated from (2.16) for 
b = 0.5 and c = 0.3. The m dependence of the phase shifts, though small, is an 
interesting feature of the results. Also, the first-order correction term to the phase 

Table 1. The spheroidal phase shifts up to first order in h2 ( b  = 0.5, c = 0.3) 

0 1 m c m 1  

0 0 +0.0323 
1 0 -0,2628 
1 1 -0.2627 
2 0 - 0.4 7 9 5 
2 1 -0.4801 
2 2 -0.4821 
3 0 -0.6377 
3 1 -0,6379 
3 2 -0.6385 
3 3 -0.6394 
4 0 -0.7592 
4 1 -0.7593 
4 2 -0.7595 
4 3 -0.7599 
4 4 -0.7604 
5 0 -0.8573 
5 1 -0,8573 
5 2 -0.8574 
5 3 -0,8576 
5 4 -0,8578 
5 5 -0.8581 

A d  

+0.7658 
+0.0465 
+0.0350 
+0.0151 
+0,0144 
+0.0124 
+0.0073 
+0.0072 
+0.0069 
+0.0064 
+0.0043 
+0.0043 
+0.0042 
t0.0040 
+0.0039 
+0.0028 
+0.0028 
t0.0028 
+0,0027 
+0.0027 
+0.0026 

1-0.7981 
-0.2163 
-0.2277 
-0.4644 
-0.4657 
-0.4696 
-0.6304 
-0.6307 
-0.6316 
-0,6330 
-0.7549 
-0.7550 
-0.7553 
-0.7559 
-0.7565 
-0.8545 
-0.8545 
-0.8546 
-0.8549 
-0,8551 
-0.8555 

+0.2441 
-0.2196 
-0.2196 
-0.4646 
-0.4646 
-0,4646 
-0.6297 
-0.6297 
-0.6297 
-0.6297 
-0.7541 
-0.7541 
-0.7541 
-0.7541 
-0.7541 
-0.8537 
-0.8537 
-0.8537 
-0.8537 
-0.8537 
-0.8537 
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shifts for 1 = 0 is very high. The reason can be seen easily. Because of the particular 
choice of b and c (b=0.5 ,  c =0.3),  the function tk(y) for 1=0 has a root at 
y 2  = 0.36851 which is very close to the singular point y = c = 0.3. The main contribu- 
tion to the first-order term comes from small values of y. For 12 1 the correction term is 
small, and it decreases with increasing 1. 

3. Another model equation 

The choice of an appropriate model equation is of considerable importance in the 
present method. It is therefore desirable to study the dependence of the calculated 
results on the particular choice of model equation made. This motivated us to repeat 
the calculations with another model equation, which we choose to be the free-particle 
radial equation. In spheroidal coordinates, the free-particle radial equation can be 
written as 

with 

Q2(z 1 - e' ( e2 '+2ce '+c2-Am~-  
h2 e Z + 2 c  e z Z + 2 c  e' 4 (3.2) 

where Langer's substitution has already been made use of. Equation (3.1) satisfies all 
the requirements of a model equation for the two-centre problem under consideration. 
We define, as before, 

s - c = e z  (3.3) 

(3.4) 

and note that Ti (s) has only one real physical turning point for all 1, m and no 
extremum beyond that. The phase shifts can be calculated as before. The phase shifts 
in the zeroth order in h2 are given by 

Ti (s) = (S -c)-'Q2(z)/h2 

where f and S are some suitably chosen large values of y and s respectively. Note that 
there is no s-dependent logarithmic phase term in this case. The integrals in (3.5) are 
evaluated numerically. 

The first-order correction to the lowest-order results is given by 

The integrals involve long expressions and require numerical evaluation. The expres- 
sions occurring in the second integral can, however, be obtained easily by putting b = 0 
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and changing y to s. The corrected phase shifts 

are shown in table 2, where the results obtained with the Coulomb radial equation as the 
model equation are also shown for the sake of easy comparison. It is interesting to note 
that, whereas the lowest-order phase shift and the correction term separately are quite 
different in the two cases, the corrected phase shifts show fairly good agreement with 
each other. It may be pointed out that the accuracy of the results obtained depends to a 
great extent on the similarity of the 'potentials' in the two equations, the given problem, 
and the model equation. Thus, when b is small, perhaps both the free-particle equation 
and the Coulomb equation are equally good as a model equation for the two-centre 
problem. For large b, the Coulomb radial equation will naturally be a better choice. 

Table 2. The spheroidal phase shifts with different model equations (b = 0.5, c = 0.3). 

f 
1 m mi A:, g m l  g m f  

Of 

0 
1 
1 
2 
2 
2 
3 
3 
3 
3 

0 
0 
1 
0 
1 
2 
0 
1 
2 
3 

+0.2068 
-0,2201 
-0.2285 
-0.4629 
-0.4640 
-0.4673 
-0.6285 
-0.6288 
-0.6296 
-0.6310 

+0.5737 
+0~0100 
+0.0028 
+0.0008 
+0.0005 
-0.0004 
-0~0001 
-0.0002 
-0.0003 
-0,0005 

+0.7805 
-0.2101 
-0,2251 
-0.4621 
-0.4635 
- 0.4 6 7 7 
-0.6286 
-0.6290 
-0.6299 
-0.6315 

+0.7981 
-0.2163 
-0.2277 
-0.4644 
-0.4657 
-0.4696 
-0.6304 
-0,6307 
-0.6316 
- 0.6 3 3 0 

4. Discussion 

We have presented in this paper the results of a semiclassical calculation for phase shifts 
for high-energy electron scattering from a two-centre potential (two fixed point 
charges). Some general features of these phase shifts studied in I remain true qualita- 
tively even when the first-order correction calculated in this paper is introduced. The 
small dependence of (T,I on m, however, is sensitive to the correction term. In general, 
the difference luml - ull increases slightly as m increases. For large values of I ,  the m 
dependence is almost washed out, as expected, and one can replace LT,I by the central 
Coulomb phase shift U/. However, the particular value of I beyond which this can be 
done depends on b and c, i.e. the separation R, the strength of the two charges, and the 
energy of the incident electron. 

It is interesting to note the variation of uml with the internuclear distance R, holding 
other parameters constant. We have shown in figure 1 the variation of uml (for 1 = 3) 
with R for a 50 MeV electron beam, with b = 0.5. As the separation between the two 
charges is made to vanish, u,I tends towards the central Coulomb phase shift uf. With a 
change in scale, the same figure will exhibit the energy dependence of the phase shifts 
for a fixed separation. 

We have presented in this paper, and in I, a simple method of studying the problem 
of high-energy electron scattering from a two-centre potential. The first part of the 
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-0'6L5r m 

-0.6LO- 

Z -0.635- 

0 

-0.630 

Figure 1. Variation of with R for a 50 MeV electron beam, with b = 0.5. 

method involves the reduction of the problem to a Schroedinger-like radial equation by 
an approximation, and has been studied in detail in I. The second part involves the use 
of a modified JWKB method and calls for some explanation. As pointed out in I, with 
the semiclassical method we could avoid considerable calculation, involved in a direct 
numerical method to determine the phase shifts, without any significant loss of accuracy 
attainable by our method. The method, however, may not be useful for every 
two-centre problem, because a simple and solvable model equation may not be 
available. A complicated two-centre function t l ( y ) ,  with many turning points, may 
make a semiclassical approach too complicated, if not impossible. A direct numerical 
method will be the only way out in those cases. Given a two-centre potential, it will 
therefore be useful first to locate the zeros and the extrema of the two-centre function 
t l ( y )  to see if a suitable model equation is readily available or not. 
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